Multi-trait genomic selection comparison of methods

Mario Calus (mario.calus@wur.nl) Roel Veerkamp

Session 28 – Abstract nr. 4027

Animal Breeding & Genomics Centre

Introduction I

 Genomic selection is becoming common practice in animal breeding

Key point is prediction of genomic breeding values (GEBV) using a reference population

 Only single trait implementations have been reported

Introduction II

 In 'classical' breeding value estimation, multi-trait (MT) application was breakthrough

 MT allows use of indicator traits to increase reliability of hard to measure or low heritability traits

Can we implement MT genomic breeding value estimation?

Objectives

 Develop different methods to estimate genomic breeding values in a MT model

Compare accuracy of GEBV obtained from different MT models

Four different MT models¹ were applied

Name	Model	Modelling of SNP variances			
А	Polygenic using pedigree based rel. matrix	SNP not included			
GRM	Polygenic using marker based rel. matrix	Equal for all SNP			
BayesA	Effects are estimated for each SNP	Drawn from 1 distribution			
Bayas	Effects are estimated for each SND	Drawn from 2 distributions ²			
Dayesc					
Variances are estimated in all models simultaneously with the effects					

² One distribution for SNP that are (not) associated with a QTL

Implementation of MT BayesC

 Early implementation was unstable for 'unequal' design (some reference animals do not have phenotypes for all traits)

 Used implementation involves canonical transformation using an EM step to predict unknown phenotypes for reference animals

Simulation

- 5.655 SNPs / 5 M / 10 chrom. (11.3 SNPs / cM)
- r² between adjacent SNPs was 0.32
- 200 QTL equally spaced across the genome
- QTL effects drawn from multivariate normal distribution
- Two traits: $h^2(tr. 1) = 90\% \& h^2(tr. 2) = 60\%$
- 3 genetic correlations (r_g): 0.2, 0.5 & 0.8

Simulation ('unequal' design)

After 1000 generations ($N_e = 500$) to generate LD:

Generation	# animals	trait 1 (h ² = 0.9)	trait 2 ($h^2 = 0.6$)
1	500	Phen.	Phen. / Unphen.
2	500	Phen.	Phen. / Unphen.
3	500	Unphen.	Unphen.
4	500	Unphen.	Unphen.

=> Reference population is 1000 (tr 1) & 500 (tr 2)

Results (average of 10 replicates) Accuracy trait 1 (h² = 0.9): Differences between models very small (not shown) Accuracy trait 2 (h² = 0.6): See following slides for r_g of 0.2 and 0.8: Generation 2: only phenotypes for trait 1

• Generation 3 & 4: no phenotypes

Results summarized

BayesA performs good across values of r_g

- At high r_a all models using SNPs perform similar
- BayesC has lowest accuracy at low r_a

 Low accuracy (BayesC) at low r_g possibly due to implementation of algorithm (canonical transformation & EM step)

Conclusions

MT GEBV have substantial higher accuracy than 'classical' MT EBV

BayesA performed best

The presented implementation of BayesC is competitive for high r_g

 GRM performs good, despite the strong assumptions (equal variance per SNP)

<u>Acknowledgements</u>

Involved companies:
 Hendrix Genetics, CRV (HG)

 Netherlands Organisation for Scientific Research (NWO – Casimir)

RobustMilk

