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Abstract

Previous studies have shown that environmental sensitivity (i.e. the
capability of an animal to adapt to changes in the environment) may
be under genetic control, which is essential to take into account if we
wish to breed robust farm animals. Linear mixed models including a
genetic e�ect explaining heterogeneity of the environmental variance have
previously been used and parameters estimated using EM and MCMC
algorithms. We propose the use of double hierarchical generalized linear
models (DHGLM), where the squared residuals are assumed to be gamma
distributed and the residual variance is �tted using a generalized linear
model (GLM). The algorithm iterates between two sets of mixed model
equations (MME), one on the level of observations and one on the level
of variances. The method was applied to data on pig litter size with
10,060 records from 4,149 sows. The DHGLM was implemented using
PROC REG in SAS and the algorithm converged within 7 days on a Linux
server. The estimates were similar to those previously obtained using
Bayesian methodology except for the correlation between the ordinary
animal e�ects and the animal e�ects included in the residual variance.
The correlation for DHGLM was calculated from the estimated BLUP
values whereas the same correlation was included as a parameter in the
Bayesian model.

To test whether the DHGLM approach gives unbiased estimates for
the genetic correlation we simulated 10,000 observations with 10 levels
(representing 10 sires) in the random e�ect and 1,000 observations per
level. For each animal, an observation was generated as the sum of a �xed
e�ect (2 levels), a random genetic e�ect (u) and a random residual. The
residual e�ect was sampled from N(0,phi), where log(phi) was generated
as the sum of a �xed e�ect (2 levels) and a random genetic e�ect (g).
Both genetic e�ects (u and g) were negatively correlated and sampled
from a multivariate normal distribution. We replicated the simulation 20
times and obtained estimates of variance components using DHGLM. The
estimated variance components and correlations seems to be unbiased.

In the future we intend to develop the DHGLMmethodology to include
the genetic correlation as a parameter in the model.

Introduction

In linear mixed models it is usually assumed that the residual variance is the
same for all observations. There might, however, be di�erences in residual
variance between individuals and there may also be known explanatory variables
controlling these di�erences. If there are random genetic e�ects in the model
controlling the residual variance, we refer to this as genetic heterogeneity.

Why is this an important issue in genetics? Modern animal breeding
require animals that are robust to environmental changes. Moreover, if there
is genetic heterogeneity then traditional methods for predicting selection e�ects
may not be su�cient [8, 3].

2



Methods have previously been developed to estimate the degree of genetic
heterogeneity. San Cristobal-Gaudy et al. [10] developed an EM-algorithm.
Sorensen & Waagepetersen [11] applied a Markov chain Monte Carlo algorithm
to estimate the parameters in a similar model, which had the advantage of
producing model checking tools based on posterior predictive distributions and
model selection criteria based on Bayes factor and deviances. Wolc et al. [12]
used mixed model methodology with the residuals modelled as a gamma Gen-
eralized Linear Model (GLM).

Are there similar problems in other areas of research? Linear models
where random e�ects are speci�ed in the residual variance part of the model have
long been applied on �nancial time-series data. Two examples are �stochastic
volatility models� [2] and �generalized autoregressive conditional heteroscedas-
ticity (GARCH) models� [1], where the residual variance depends on random
temporal �nancial shocks. These models have been estimated using EM- and
MCMC-algorithms.

HGLM and hierarchical likelihood Recently, however, Lee & Nelder [6]
developed the framework of double hierarchical generalized linear models (DHGLM).
The parameters are estimated by iterating between a hierarchy of generalized
linear models (GLM), where each GLM is estimated by iterative weighted least
squares. DHGLM give model checking tools based on GLM theory and model
selection criteria are calculated from the hierarchical likelihood (h-likelihood).
A user-friendly version of DHGLM has been implemented in the statistical soft-
ware package Genstat. To our knowledge, DHGLM has previously only been
applied on data with relatively few levels in the random e�ects (less than 100)
whereas models in animal breeding applications usually have a large (>�>100)
number of levels in the random e�ects since each individual have a random
genetic e�ect.

Inference in DHGLM is based on the h-likelihood theory developed by Lee
& Nelder [5] and is a direct extension of the HGLM algorithm proposed in the
same paper which is explained in detail in Lee, Nelder & Pawitan [7]. HGLMs
have previously been applied in genetics (e.g. [4, 9]). A major advantage of these
models is that the studied phenotypic trait may have any distribution belong-
ing to the exponential family of distributions (e.g. normal, binomial, poisson,
gamma). Also multiple-trait models with a combination of these distributions
is possible. DHGLM is a natural and exciting extension of HGLM.

Aim The aim of this paper is to examine the potential use of DHGLM in ani-
mal breeding applications. We test the DHGLMmethodology both on simulated
data and on the �eld data previously analyzed by Sorensen & Waagepetersen
[11].
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Material and Methods

Linear mixed models and HGLM

Lee & Nelder [5] showed that linear mixed models can be �tted using a hierarchy
of GLM by using an augmented linear model. The linear mixed model

y = Xb+ Zu+ e

V = ZZTσ2
u + Iσ2

e

may be written as an augmented weighted linear model:

ya = Taδ + ea (1)

where:

ya =
(

y
0q

)

Ta =
(

X Z
0 Iq

)

δ =
(

b
u

)

ea =
(

e
−u

)
Here, q is the number of columns in Z, 0q is a vector of zeros of length q,

and Iq is the identity matrix of size q × q. The variance-covariance matrix of
the augmented residual vector is given by:

V (ea) =
(

Iσ2
e 0

0 Iqσ
2
u

)
This weighted linear model gives the same estimates of the �xed and random

e�ects (b and u respectively) as Henderson's mixed model equations.
The estimates from weighted least squares are given by:

Tt
aW

−1Taδ̂ = Tt
aW

−1ya

where W ≡ V (ea).
The two variance components are estimated iteratively by applying a gamma

GLM to the residuals e2i and u2
i with intercept terms included in the linear
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predictors. The leverages hi for these models are calculated from the diagonal
elements of the hat matrix:

Ha = Ta(Tt
aW

−1Ta)−1Tt
aW

−1 (2)

So far we have assumed that the random e�ects ui are iid, but this does not
restrict the model because a covariance structure of umay be included implicitly
by modifying the incidence matrix Z [8]. If we have an animal model, for
instance, with relationship matrix A then we can include this by premultiplying
the incidence matrix Z with the choleski factorization of A.

Double HGLM

By applying the augmented model approach of eq. 1 also to the dispersion part
of the model we obtain a double HGLM (DHGLM). The model for the residual
variance is given by:

log(µd) = Xdbd + Zdud (3)

where ud is a random e�ect with V (ud) = Iσ2
d.

Re-writing this model as an augmented model with the augmented response
vector da consisting of the deviances d from model 1 and augmented values ψ:

da =
(

d
ψ

)

E(da) = µ∗d

log(µ∗d) = T∗
aδ

∗ (4)

where T∗
a =

(
Xd Zd

0 I

)
andψ is the (unconditional) expectation of the

random e�ects.
Model 1 is used for modelling the mean part of the model, whereas the

residual variance now depends on the linear predictor of the dispersion in eq.
4. Let Σ be a diagonal matrix having elements equal to the predicted values
exp(T∗

aδ̂
∗) and V (ud) = Iσ2

d. The vector of individual deviances d∗ obtained
from eq. 4 is subsequently used to estimate σ2

d by �tting a gamma GLM to the
response d∗i /(1− h∗i ) where h∗i are the corresponding leverages.

Algorithm overview

The �tting algorithm is implemented by:

1. Initialize Σ, σ2
uand σ

2
d

2. Fit the model for the mean using eq. 1 (i.e. Henderson's mixed model
equations) and calculate the leverages hi for the augmented model.
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3. Calculate the variance of the random e�ects in the mean model σ2
u by

�tting a gamma GLM to the response û2/(1− hi).

4. Calculate the residual variances in Σ from the dispersion model 4. Calcu-
late the corresponding leverages h∗i and deviances d∗i .

5. Calculate the variance of the random e�ects in the dispersion model σ2
d

by �tting a gamma GLM to the response d∗i /(1− h∗i ).

6. Iterate steps 2-5 until conergence

We have described the algorithm for one random e�ect in the mean and disper-
sion parts of the model but extending the algorithm for several random e�ects
is quite straight forward. We implemented the algorithm with two random ef-
fects using PROC REG in SAS. Hence, our implementation uses the augmented
model approach with iterative least square �tting.

The described algorithm �ts a double HGLM for a normally distributed
trait y with normally distributed random e�ects u and ud, whereas the general
algorithm given by Lee and Nelder [7] allow a variety of distributions both for
the outcome variable and the random e�ects.

Data and models for pig litter size

Pig litter size from 4149 sows were analyzed by Sorensen & Waagepetersen [11]
and the data is described therein. The data includes 10060 records from the
4149 sows in 82 herds. Hence, there were repeated measurements on sows. The
maximum number of parities was nine. The data included the following class
variables: herd (82 classes), season (4 classes), type of insemination (2 classes),
and parity (9 classes). The data is highly imbalanced with two herds having
one observation and 13 herds with �ve observations or less. There were nine
observations in the ninth parity.

Several models were analyzed by Sorensen & Waagepetersen [11] with an
increasing level of complexity in the model for the residual variance and with the
model for the mean y = Xb+Wp+Za+e being unchanged. Here y is litter size
(vector of length 10060), b is a vector including the �xed e�ects of herd, season,
type of insemination and parity, and X is the corresponding design matrix
(10060x94), p is the random permanent environmental e�ects (vector of length
4149),W is the corresponding incidence matrix (10060x4149) and V (p) = Iσ2

p ,
a is the additive genetic random e�ect, Z is the corresponding incidence matrix
(10060x4149) and V (a) = Aσ2

p where A is the additive relationship matrix.
Hence the LHS of the mixed model equations is of size 8392x8392.

The residual variance e was modelled as follows.

Model I: Homogeneous variance

V (ei) = exp(b̃0)

where b̃0 is a common parameter for all i.
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Model II: Fixed e�ects in the linear predictor for the residual variance

In this model each parity and insemination type has its own value for the residual
variance.

V (ei) = exp(x̃ib̃)

where b̃ is a parameter vector including e�ects of parity and type of insem-
ination, and x̃iis the i: th row in the design matrix X̃.

Model III: Fixed and random e�ects in the linear predictor for the

residual variance

V (ei) = exp(x̃ib̃+wip̃ + ziã)

where p̃ and ã are random e�ects of peramanent environment and genetic
additive values, respectively, and wi and zi are the i: th rows W and Z. This
is Model 4 in [11].

Results

Analysis of pig litter size data

The DHGLM estimates and Bayesian estimates (i.e. posterior mean estimates
from [11]) were identical for the linear mixed model with homogeneous variance
(Model I) and were very similar for Model II where �xed e�ects are included in
the residual variance part of the model (Table 1). For Model III, with random ef-
fects in the residual variance part of the model, the DHGLM estimates deviated
from the Bayesian estimates. This di�erences may be due to the fact that the
genetic correlation ρ was not included as a parameter in the DHGLM approach.
Alternatively, the di�erence could be caused by the fact that the Bayesian esti-
mates are posterior distribution means and that the posterior distributions are
skewed.

The data is unbalanced with few observations within some herds. This is
re�ected in the leverage plot (Figure 1) as some leverages are equal to 1.0.
Although the data was quite unbalanced and the algorithm was not computa-
tionally optimized the algorithm converged within 7 days on a Linux server.
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Table 1 Comparison between DHGLM and Bayesian (S&W 2003) estimates
for three models

Model σ2
a σ2

p b̃0 δ̃ins δ̃par σ2
ã σ2

p̃ ρ

I DHGLM 1.40 0.60 2.00
S&W 2003 1.40 0.60 2.00

II DHGLM 1.39 0.72 1.86 -0.15 0.32
S&W 2003 1.37 0.71 1.87 -0.15 0.34

III DHGLM 1.38 0.68 1.83 -0.16 0.32 0.02 0.006 -0.04*
S&W 2003 1.62 0.60 1.77 -0.17 0.35 0.09 0.06 -0.62

b̃0 is the mean in the model for the residual variance
δ̃ins is the �xed e�ect of insemination (in the model for the residual variance)
δ̃par is the �xed e�ect for the di�erence in �rst and second parity (in the

model for the residual variance)
*Correlation between realised BLUP of a and ã weighted by their reliabilities

Figure 1 Leverages hi for the mean part of the model. For the random
(animal and permanent environmental) e�ects the reliabilities of the estimated
BLUP are equivalent to 1− hi.
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Simulations

To test whether the DHGLM approach gives unbiased estimates for the genetic
correlation we simulated 10,000 observations. The number of levels in the ran-
dom e�ect was either 10 or 100, and the simulated genetic correlation was either
0 or -0.5. For each animal, an observation was generated as the sum of a �xed
e�ect (2 levels), a random genetic e�ect (a) and a random residual. The resid-
ual e�ect was sampled from N(0,φ), where log(φ) was generated as the sum of
a �xed e�ect (2 levels) and a random genetic e�ect (ã). The genetic e�ects (a
and ã) were sampled from a multivariate normal distribution. We replicated
the simulation 20 times and obtained estimates of variance components using
DHGLM. The estimated variance components and correlations seems to be un-
biased (Table 2).

Table 2 Estimated variance components in the model of the mean (σ2
a)

and the residual variance (σ2
ã) using DHGLM. The correlations (ρ) between the

random e�ects were estimated retrospectively from the BLUP values. Mean
(s.d.) of 20 replicates.

Simulated values Estimates
No. clusters Obs. per cluster σ2

a σ2
ã ρ σ2

a σ2
ã ρ

10 1000 1.0 0.5 0.0 1.06 0.44 -0.070
(0.43) (0.15) (0.25)

100 100 1.0 0.5 0.0 0.99 0.51 -0.015
(0.17) (0.06) (0.07)

10 1000 1.0 0.5 -0.5 1.00 0.48 -0.44
(0.41) (0.26) (0.29)

100 100 1.0 0.5 -0.5 1.01 0.50 -0.42
(0.17) (0.07) (0.07)

Discussion

We have shown that DHGLM is a feasible estimation algorithm for animal mod-
els. We implemented the algorithm using the simple regression algorithm PROC
REG in SAS. The DHGLM algorithm iterates between weighted least squares
and it should therefore be possible to develop a more computationallly e�-
cient algorithm using standard numerical algorithms for least square problems.
DHGLM estimation is available in the user-friendly environment of Genstat. We
have been able to run DHGLM in Genstat for models with up to 5000 equations
in the mixed model equations (results not shown). Hence, the Genstat version
of DHGLM is suitable for sire models but not for animal models with a large
number of individuals. A recently developed R package hglm is also available
at www.larsronnegard.se, which allows for �xed e�ects in the residual variance.

The DHGLM approach also gives a possibility to analyze non-normal traits
and it should be a good idea to �t a model to the pig litter size data where the
dependent variable is poisson distributed. Important future development of the
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DHGLM framework is to add ρ as a parameter of the model and to add model
selection criteria based on the h-likelihood.
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