

Improvement and validation of milk fatty acid predictions using mid-infrared spectrometry

H. Soyeurt^{1,2,*}, S. McParland³, D.P. Berry³, E. Wall⁴, N. Gengler^{1,2}, F. Dehareng⁵, and P. Dardenne⁵

¹ University of Liège, Gembloux Agro-Bio Tech - GxABT, Gembloux, Belgium
² National Fund for Scientific Research, Brussels, Belgium
³ Teagasc Moorepark Dairy Production Rsearch Centre, Cork, Ireland
⁴ Scottish Agricultural College, Penicuik, UK

⁵ Walloon Agricultural Research Center – CRA-W, Gembloux, Belgium

Fatty Acids

- Generally, 2.5 to 7.0% of fat in bovine milk
- 96% of fat is composed by triglycerides
 - Groups of fatty acids (FA):
 - Saturated (SAT): 70%
 - Unsaturated (UNSAT): 30%
 - Monounsaturated (MONO): 25%
 - Polyunsaturated (POLY): 5%

Langara, 2008

Measurement

- Gas chromatography:
 - Major advantage: accuracy
 - Major disadvantages:
 - Expensive reagents
 - Time consuming
 - Skilled staff

Measurement

- Gas chromatography:
 - Major advantage: reliability
 - Major disadvantages:
 - Expensive reagents
 - Time consuming
 - Skilled staff
- → Find an alternative method

Measurement

- Gas chromatography:
 - Major advantage: reliability
 - Major disadvantages:
 - Expensive reagents
 - Time consuming
 - Skilled staff

- Fast analysis (up to 500 samples/hour)
- Cheap analysis
- Used in routine milk recording

High variability:

- → For milk recording scheme:
 - March 2005 to December 2007
 - 475 cows in 8 herds
 - 6 dairy breeds
- → From milk payment scheme

Analysed by Mid-Infrared (MilkoScan FT6000)

Spectra were exported

Analysed by Mid-Infrared (MilkoScan FT6000)

Spectra were exported

Selection of interesting samples by Principal Component Approach

Chromatographic analysis

Mid-Infrared spectrum

CALIBRATION SET (N=239)

Analysed by Mid-Infrared (MilkoScan FT6000)

Spectra were exported

Selection of interesting samples by Principal Component Approach

Chromatographic analysis

Mid-Infrared spectrum

CALIBRATION SET (N=239)

PLS approach was used to estimate the calibration equations

- 4 methods were tested:
 - (1) Partial Least Squares regressions (PLS)

- 4 methods were tested:
 - (1) Partial Least Squares regressions (PLS)
 - (2) PLS + repeatability file:
 - Spectra provided by different spectrometers for the same milk samples

- 4 methods were tested:
 - (1) Partial Least Squares regressions (PLS)
 - (2) PLS + repeatability file (REP)
 - (3) PLS + first derivative applied to the spectra:
 - Correction of baseline drift

- 4 methods were tested:
 - (1) Partial Least Squares regressions (PLS)
 - (2) PLS + repeatability file (REP)
 - (3) PLS + first derivative (DER)
 - (4) PLS + DER + REP

Analysed by Mid-Infrared (MilkoScan FT6000)

Spectra were exported

Selection of interesting samples by Principal Component Approach

Chromatographic analysis

Mid-Infrared spectrum

CALIBRATION SET (N=239)

PLS approach was used to estimate the calibration equations

Internal validation by cross-validation

External validation by adding new samples

Analysed by Mid-Infrared (MilkoScan FT6000)

Spectra were exported

Selection of interesting samples by Principal Component Approach

Chromatographic analysis

Mid-Infrared spectrum

CALIBRATION SET (N=239)

PLS approach was used to estimate the calibration equations

Internal validation by cross-validation

Cross-validation:

- 20 groups

Analysed by Mid-Infrared (MilkoScan FT6000)

Spectra were exported

Selection of interesting samples by Principal Component Approach

Chromatographic analysis

Mid-Infrared spectrum

CALIBRATION SET (N=239)

PLS approach was used to estimate the calibration equations

362 new samples:

- Collected in Belgium, Ireland and Scotland
- Between April 2008 and August 2009
- from several breeds and cows

External validation on independent new samples

	N=239	
Constituent	Mean	SD
C6:0	0.08	0.02
C8:0	0.05	0.02
C10:0	0.12	0.04
C14:0	0.48	0.14
C16:0	1.29	0.42
C18:0	0.49	0.23
C18:1 trans	0.15	0.09
C18:1 cis-9	0.89	0.36
C18:1 cis	0.96	0.37
Saturated	2.98	0.85
Monounsaturated	1.26	0.43
Unsaturated	1.46	0.48
Short chain (C4-C10)	0.39	0.11
Medium chain (C12-C16)	2.19	0.64
Long chain (C17-C22)	1.86	0.69

High variability of FA:

Coefficient of variation (100/mean * SD) ranged from 25% to 60%.

	Method 4		
	R²cv (N=239)	R²v (N=362)	
C6:0	0.94	0.90	
C8:0	0.91	0.81	
C10:0	0.89	0.73	
C14:0	0.93	0.90	
C16:0	0.90	0.90	
C18:0	0.89	0.72	
C18:1 trans	0.90	0.49	
C18:1 cis-9	0.95	0.91	
C18:1 cis	0.96	0.93	
Saturated	0.99	0.98	
Monounsaturated	0.97	0.95	
Unsaturated	0.97	0.96	
Short chain	0.94	0.93	
Medium chain	0.95	0.94	
Long chain	0.96	0.95	

R²cv and R²v confirms the ability of MIR to predict some FA directly in milk

	RPD (N=239)			
g/dl of milk	1 (*)	2 (*)	3 (*)	4 (*)
C6:0	3.95	4.02	3.89	3.95
Total C18:1 trans	3.16	3.09	3.05	3.09
C18:1 cis-9	4.61	4.68	4.35	4.6
Saturated	9.34	10.01	9.55	9.95

RPD = ratio of SD to the standard error of cross-validation; 1 = PLS; 2 = PLS+REP; 3 = PLS+DER; 4 = PLS+DER+REP

Some FA could be better predicted using another method

Conclusion

- MIR can be used to quantify some FA directly on milk
- Prediction of fat and prediction of FA are decorrelated → interest to use specific equations to quantify FA (data not shown)
- Improvement of accuracy by:
 - Using a first derivative and a repeatability file to develop calibration equations
 - OR chosing the most appropriated method based on the studied FA

Acknowledgement

 Walloon Breeding Association (AWE) and Milk Committee of Battice

 National Fund for Scientific Research (FNRS): 2.4.623.08.F

 European Commission, Directorate-General for Agriculture and Rural Development, under Grant Agreement 211708 (project Robustmilk).

This study has been carried out with financial support from the Commission of the European Communities, FP7, KBBE-2007-1. It does not necessarily reflect its view and in no way anticipates the Commission's future policy in this area.

www.robustmilk.eu

