

2011 INTERBULL Meeting August 26-28, Stavanger, Norway

Consequences of selection for milk quality and robustness traits

Catherine Bastin^{1*}, D.P. Berry², M.P. Coffey³, E. Strandberg⁴, J.I. Urioste ^{4,5}, R.F. Veerkamp⁶, and N. Gengler ^{1,7}

Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège; ² Moorepark,
 Teagasc; ³Sustainable Livestock Systems Group, Scottish Agricultural College; ⁴Dept.
 Animal Breeding and Genetics, Swedish University of Agricultural Sciences; ⁵Depto.
 Prod. Animal y Pasturas, Fac. de Agronomía, UDELAR; ⁶Animal Breeding and Genomics
 Centre, Wageningen University; ⁷ National Fund for Scientific Research

www.robustmilk.eu

Context

- An increasing number of non-productive traits are included in dairy breeding objectives
 - □ e.g., conformation, SCS, fertility, longevity
 - also new traits? e.g., animal welfare, products quality, environmental impacts of dairy production
 - Towards a better overall economic efficiency
- But consequences of selection for these new traits should be investigated ...

Objective

Estimate consequences of selection for new robustness and milk quality traits on genetic gain in other economically important traits

- New traits
 - □ For robustness: Body Condition Score
 - □ For milk quality: dUNSAT and dMONO → Indices that represent the relative part of milk fat that is unsaturated and mono-unsaturated
- Two steps:
 - 1. Estimate genetic correlations among traits
 - 2. Which breeding scenarios to be tested?

Part of Robustmilk project

Develop innovative and practical breeding tools for improved dairy products from more robust dairy cows

www.robustmilk.eu

Genetic correlations

- Approximated as correlations among EBVs of Holstein bulls with rel ≥ 0.85 from the August 2011 official routine run for the Walloon Region
- For traits available in Wallonia:

Production	Milk, fat and protein yields
Functionality	Longevity = survival over successive lactations
	Udder healh = SCS, low values desirable
	Fertility = pregnancy rate
Conformation	Overall udder score and overall feet and legs score
New traits	Robustness → Body Condition Score
	Milk quality - fatty acids → dUNSAT and dMONO, two indices that
	represent the relative part of milk fat that is unsaturated and
	monounsaturated, high values are desirable

Breeding scenarios

- 6 scenarios including traits available in Wallonia
- Reference point = "current selection scenario" (scenario 2)

Expected relative genetic gain (%) under each breeding scenario

	Milk	Fat	Protein	Longevity	SCS	Fertility	Udder	Legs	BCS	dUNSAT	dMONO
1	41	47	53	14	6	-25	-10	-1	5	-4	6
2	18	17	21	30	-14	0	13	16	6	-6	3
3	11	10	12	30	-25	9	13	14	7	-4	2
4	16	15	20	26	-13	3	10	15	15	-4	3
5	15	13	20	25	-12	1	11	15	5	4	12
6	4	1	6	24	-25	17	9	12	17	6	10

	Milk	Fat	Protein	Longevity	SCS	Fertility	Udder	Legs	BCS	dUNSAT	dMONO
1	41	47	53	14	6	-25	-10	-1	5	-4	6
2	18	17	21	30	-14	0	13	16	6	-6	3
3	11	10	12	30	-25	9	13	14	7	-4	2
4	16	15	20	26	-13	3	10	15	15	-4	3
5	15	13	20	25	-12	1	11	15	5	4	12
6	4	1	6	24	-25	17	9	12	17	6	10

Scenario 1: High improvements in milk, fat and protein yields but negative impacts on fertility, udder health, and overall udder score

"balanced" indices required

	Milk	Fat	Protein	Longevity	SCS	Fertility	Udder	Legs	BCS	dUNSAT	dMONO
1	41	47	53	14	6	-25	-10	-1	5	-4	6
2	18	17	21	30	-14	0	13	16	6	-6	3
3	11	10	12	30	-25	9	13	14	7	-4	2
4	16	15	20	26	-13	3	10	15	15	-4	3
5	15	13	20	25	-12	1	11	15	5	4	12
6	4	1	6	24	-25	17	9	12	17	6	10

" Balanced" indices

- lower improvements in yields but favourable genetic gain in most of the other traits
- 20% emphasis on fertility → genetic gain of +9%

	Milk	Fat	Protein	Longevity	SCS	Fertility	Udder	Legs	BCS	dUNSAT	dMONO
1	41	47	53	14	6	-25	-10	-1	5	-4	6
2	18	17	21	30	-14	0	13	16	6	-6	3
3	11	10	12	30	-25	9	13	14	7	-4	2
4	16	15	20	26	-13	3	10	15	15	-4	3
5	15	13	20	25	-12	1	11	15	5	4	12
6	4	1	6	24	-25	17	9	12	17	6	10

Scenario 4: inclusion of BCS only other traits not significantly affected

Scenario 6: inclusion of BCS and milk quality + more emphasis on functionality

improvement of fertility (+17%)

	Milk	Fat	Protein	Longevity	SCS	Fertility	Udder	Legs	BCS	dUNSAT	dMONO
1	41	47	53	14	6	-25	-10	-1	5	-4	6
2	18	17	21	30	-14	0	13	16	6	-6	3
3	11	10	12	30	-25	9	13	14	7	-4	2
4	16	15	20	26	-13	3	10	15	15	-4	3
5	15	13	20	25	-12	1	11	15	5	4	12
6	4	1	6	24	-25	17	9	12	17	6	10

- Changes in the balance between production and other traits did not affect dUNSAT and dMONO
- 5% of emphasis on dUNSAT and dMONO provides genetic gain

Conclusion

- Current breeding goals with balanced emphasis on both production and non-production traits
 - favorable genetic gain in yields but also in most of the other traits
 - new traits are not strongly affected
- Inclusion of new traits?
 - BCS and milk quality traits (dUNSAT and dMONO)
 - other traits slightly affected
 - economic weights require further research

Conclusion

- Limitations of the study:
 - approximation of genetic correlations
 - results assumed equal reliabilities but accuracy will differ due to heritability and different recording
- Further studies:
 - more reliable genetic correlation estimates
 - inclusion of other new traits (e.g., udder health, energy balance indicators)

Corresponding author's email: catherine.bastin@ulg.ac.be

Study supported by the European Commission, Directorate-General for Agriculture and Rural Development, under Grant Agreement 211708 (project Robustmilk)

This study has been carried out with financial support from the Commission of the European Communities, FP7, KBBE-2007-1. It does not necessarily reflect its view and in no way anticipates the Commission's future policy in this area.

