Genetic heterogeneity: Is large scale breeding value estimation possible?

Lars Rönnegård SLU, Uppsala

Collaborators

- Majbritt Felleki,
- Freddy Fikse,
- Han Mulder,
- Erling Strandberg

Financed by the EU project RobustMILK

Aim

To estimate variance components, on a large dairy cattle data set, using a model having breeding values explaining part of the residual variance.

Data

- Swedish Holstein
- Records: 1,693,154
- Animals: 177,411
- Years: 2002-2009

Histograms of studied traits

Statistical Model

$$y = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}a + \mathbf{W}u + e$$

$$a \sim N(0, \mathbf{A}\sigma_a^2)$$
 Breeding values

$$u \sim N(0, \mathbf{I}\sigma_u^2)$$
 Permanent environmental effect

Statistical Model

$$y = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}a + \mathbf{W}u + e$$

$$a \sim N(0, \mathbf{A}\sigma_a^2)$$
 Breeding values

$$u \sim N(0, \mathbf{I}\sigma_u^2)$$
 Permanent environmental effect

$$V(e_i) = \exp(\mathbf{X}_d \boldsymbol{\beta}_d + \mathbf{Z} a_d + \mathbf{W} u_d)$$

$$a_d \sim N(0, \mathbf{A}\sigma_{a_d}^2)$$
 Breeding values controlling the residual variance

$$u_d \sim N(0, \mathbf{I}\sigma_{u_d}^2)$$

Statistical Model

$$y = \mathbf{X}\boldsymbol{\beta} + \mathbf{Z}a + \mathbf{W}u + e$$

$$a \sim N(0, \mathbf{A}\sigma_a^2)$$
 Breeding values

$$u \sim N(0, \mathbf{I}\sigma_u^2)$$
 Permanent environmental effect

$$V(e_i) = \exp(\mathbf{X}_d \boldsymbol{\beta}_d + \mathbf{Z} a_d + \mathbf{W} u_d)$$

$$a_d \sim N(0, \mathbf{A}\sigma_{a_d}^2)$$
 Breeding values controlling the residual variance

$$u_d \sim N(0, \mathbf{I}\sigma_{u_d}^2)$$

Fixed effects include year-season, age at calving, days in milk

Estimation Method

Double hierarchical generalized linear model (DHGLM)

Implemented using ASReml (Rönnegård et al. 2010 GSE 42:8)

Estimation Method

Double hierarchical generalized linear model (DHGLM)

Implemented using ASReml (Rönnegård et al. 2010 GSE 42:8)

Basically an "ordinary heterogeneity correction" with a genetic effect added to commonly used fixed effects such as herd, year and season.

Results

- Computation time
 - Iterated between 20 ASReml runs.
 - 10 days in total on a Linux server
- Somatic Cell Score: $\sigma_{a_d}^2 = 0.20$
- Milk Yield: $\sigma_{a_d}^2 = 0.27$

Conclusion

Possible to fit a model with genetic heterogeneity on a large dairy cattle data set

Discussion

 Possible to programme directly in ASReml from version 3.1 => speed up

• Estimating a correlation between breeding values in the mean and variance, ie $cor(a,a_d)$