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Introduction
• Energy balance (output – input) is a heritible
indicator of fertility

• Useful for a multi-trait breeding programme
• But

• Measurement not feasible on commercial herds
• Little data available

• Indicators of energy balance proposed
• Fat: protein ratio of milk
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Materials and Methods
1. 2 data sets
• Langhill experimental herd (SAC, Scotland)
• Teagasc Moorepark (Ireland)
• Routinely recorded phenotypic traits

• Milk, fat, protein, live weight, BCS, & (DMI)
• Random regressions fit to data seperately

• Models fit within parity
• Data retained between 1990-2011

• Energy balance (MJ/d) = inputs – outputs
• Incl. milk, fat, protein, live weight, BCS & DMI



Materials and Methods

2. Mid infrared spectral data
• MPK samples (AM & PM) analysed weekly
• SAC samples (AM, MD & PM) analysed monthly

• Mid 2008 – January 2011
• Light shone through each milk sample
• 1,060 wavelengths readings for each sample
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Materials and Methods

3. Prediction equations
• Partial least squares regression analysis
• Predictors: MIR spectrum and milk yield
• AM, PM & (MD) samples handled separately
• SAC samples (n ≤2,989)
• MPK samples (n ≤844)
• 3 types of analysis undertaken

• Calibration (75%) – develop equations
• Validation (25%) – independent test of equations



Calibration & Validation

(4 iterations)
(4 iterations)



RESULTS



Within Research data set

0.6721-1.99(1.23)0.7419AMAM
0.66213.63(1.70)0.7419PMPM

MPK
0.6925-2.35(0.90)0.7224MDMD
0.67251.57(0.90)0.7024AMAM
0.65252.18(0.85)0.7024PMPM

SAC
RRMSEBias (se)RRMSEValCal

External ValidationCross ValData Sets



Across Research data set

0.07280.08(0.04)0.7124AMMD
0.00280.00(0.04)0.6925AMAM
0.0328-0.05(0.05)0.7024AMPM
0.15280.14(0.03)0.7124PMMD

0.09280.08(0.03)0.6925PMAM
0.09280.11(0.04)0.7024PMPM

MPKSAC
RRMSEb (se)RRMSEValCal

External ValidationCross ValData Sets



Differences
• North American vs New Zealand Holstein-Friesian

• Milk yield, DMI, BCS, Live weight
• Feeding system

• Total mixed ration (SAC) vs grass (MPK)
• Milking frequency
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PCA of spectra – SAC & MPK
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Pooled Research data sets

• Cross Validation
• RMSE = 27 MJ
• R = 0.69

• External Validation
• Slope = 0.98 (0.03)
• Bias = 1.12 (0.88)
• R = 0.69



Conclusion

• The mid-infrared spectrum is useful as an
indicator of energy balance

• Not useful to predict energy balance UNLESS
the variation to be predicted is represented in
the calibration of equations

• Pooled data sets provides a robust equation
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