

63rd EAAP Annual Meeting 2012 August 27-31, Bratislava, Slovakia

Genetics of the mid-infrared predicted lactoferrin content in milk of dairy cows

Catherine Bastin^{1*}, G. Leclercq¹, H. Soyeurt^{1,2}, and N. Gengler¹

¹ Gembloux Agro-Bio Tech, University of Liège (GxABT, ULg) Gembloux, Belgium
² National Fund for Scientific Research (FRS-FNRS) – Brussels, Belgium

Bovine lactoferrin

- Lactoferrin = iron-binding glycoprotein present in milk
- Important host defence molecule:
 antimicrobial/antiviral, antioxidant, immunomodulatory activities
 role in the defence mechanisms in the mammary gland

Used as a food additive:

- beneficial effects of the oral administration of lactoferrin on the health of humans and animals
- □ e.g. in humans: cancer protection
- □ e.g. in animals: lactoferrin + penicillin → ↗ antibacterial activity against *S. aureus*

Tsuda et al., 2000, Mutat. Res.; Diarra et al., 2002, J. Dairy Sci.; Wakabayashi et al., 2006, Int. Dairy J.

Genetic selection for lactoferrin?

Economically interesting > Nutraceutical properties of milk > Defence mechanisms in the mammary gland

Variable and heritable

Objectives

Measurable

Economically interesting

Variable and heritable

Objectives:

- genetic variability of the mid-infrared prediction of lactoferrin content in milk
- > genetic correlations with
 - major production traits
 - udder health trait
 - fatty acid contents in milk

Data and edits

Mid-infrared prediction of

- lactoferrin content in milk (MIR-LF; mg/L)
- content in milk of 10 individual and 7 groups of fatty acids (FA; g/dL)
- After edits (and random selection of herds) :
 - 9,878 first-parity Holstein cows from 150 Walloon herds
 - > 88,000 records for milk, fat, and protein traits
 - > 85,000 records for somatic cell score (SCS)
 - > 61,000 records for FA and MIR-LF traits

Data: MIR-LF

- Average MIR-LF = 162.81 ± 68.76 mg/L CV=42%
- Average MIR-LF across days in milk:

Correlations among observations

Short chain

Long chain

Medium chain

Correlations among observations at the same day

Correlations between		
MIR-LF and:		
Vilk (kg)	-0.42	

Milk (kg)	-0.42
Fat (kg)	-0.24
Protein (kg)	-0.22
Fat (%)	0.31
Protein (%)	0.59
Somatic cell score	0.30

Correlations between MIR-LF and the groups of FA (g/dL of milk):				
Saturated 0.30				
0.17				
0.15				

0.23

0.36

0.06

Model

23 two-trait random regression test-day models
 y = Xβ + Q (Zp + Za) + e

- β = fixed effects
 - herd x test day
 - lactation stage (classes of 5 days)
 - gestation stage
 - age at calving x season of calving x lactation stage
- p = permanent environmental random effect
 - a = additive genetic random effect
 - \rightarrow regression curves modelled with 2nd order Legendre polynomials

Variance components estimated using AIREMLF90 (Misztal, 2012)

MIR-LF heritability

Gaunt et al., 1980, J. Dairy Sci. Soyeurt et al., 2007, J. Dairy Sci. Arnould et al., 2009, J. Dairy Sci.

Correlations with production

Average daily genetic correlation with MIR-LF (SE = 0.06 - 0.08)

Milk (kg)	Fat (kg)	Protein (kg)	Fat (%)	Protein (%)
-0.17	0.09	-0.01	0.30	0.39

Correlations with SCS

Correlations with fatty acids

Average daily genetic correlation with MIR-LF (SE = 0.06 - 0.08)

Individual FA (g/dL of milk)		Groups of FA (g/dL of milk)
C4:0	0.14	Saturated
C6:0	0.21	Monunsaturated
C8:0	0.25	Polyunsaturated
C10:0	0.27	Unsaturated
C12:0	0.31	Short chain
C14:0	0.31	Medium chain
C16:0	0.33	Long chain
C17:0	0.32	
C18:0	0.04	
C18.1 cis-9	0 20	

Genetic selection for lactoferrin?

Genetic selection for lactoferrin?

Generally: lactoferrin level in mastitic milk >>> normal milk

Mastitis and MIR-LF data from 26 Walloon herds since 2010

1497 lactations (of which 446 with mastitis) with at least 3 MIR-LF records

Generally: lactoferrin level in mastitic milk >>> normal milk

	Ν	Average MIR-LF over the lactation	
		Mean	SD
Non mastitic cows	1051	197.2	63.9
Mastitic cows	446	208.3	60.9

Mastitis and MIR-LF data from 26 Walloon herds since 2010

1497 lactations (of which 446 with mastitis) with at least 3 MIR-LF records

Generally: lactoferrin level in mastitic milk >>> normal milk

	Ν	Average MIR-LF over the lactation	
		Mean	SD
Non mastitic cows	1051	197.2	63.9
Mastitic cows	446	208.3	60.9
Significantly higher for mastitic cow			astitic cow

Mastitis and MIR-LF data from 26 Walloon herds since 2010

1497 lactations (of which 446 with mastitis) with at least 3 MIR-LF records

- Generally: lactoferrin level in mastitic milk >>> normal milk
- But lactoferrin in mastitic milk varies according to the pathogen and the pathogenicity of the bacteria.

e.g. acute >< peracute mastitis caused by E. coli

- Sufficient level of lactoferrin necessary to prevent certain infections
 - Threshold of 200 mg/l to inhibit the growth of *E. coli.*

Kawai et al., 1999, Vet. Res. Commun. Hagiwara et al., 2003, J. Vet. Med. Sci. Lee et al., 2004, J. Vet. Med. Sci.

- Generally: lactoferrin level in mastitic milk >>> normal milk
- But lactoferrin in mastitic milk varies according to the pathogen and the pathogenicity of the bacteria.

e.g. acute >< peracute mastitis caused by E. coli

- Sufficient level of lactoferrin necessary to prevent certain infections
 - Threshold of 200 mg/l to inhibit the growth of *E. coli.*
 - Iactoferrin = optimum trait
 - ✓ higher level: ability of the cow to fight infections vs. occurrence of mastitis
 - ✓ joint selection for improved SCS and mastitis resistance required

Conclusions

The mid-infrared prediction of lactoferrin

- = indicator of lactoferrin content in milk
- variable and heritable especially in mid to late lactation
- low and negative genetic correlation with milk yield
- positive genetic correlations with fat, protein and fatty acid contents
- Selection for improved MIR-LF feasible
 - "nutraceutical properties of milk index"
 - "udder health index"

Corresponding author's email: catherine.bastin@ulg.ac.be

Study supported by:

- Public Service of Wallonia (SPW-DGO 3; project D31-1273)
- LAECEA project for providing mastitis data
- European Commission, Directorate-General for Agriculture and Rural Development, under Grant Agreement 211708 (project Robustmilk)

This study has been carried out with financial support from the Commission of the European Communities, FP7, KBBE-2007-1. It does not necessarily reflect its view and in no way anticipates the Commission's future policy in this area.

www.robustmilk.eu